Chaoticity in vibrating nuclear billiards

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chaoticity in vibrating nuclear billiards.

We study the motion of classical particles con ned in a two-dimensional "nuclear" billiard whose walls undergo periodic shape oscillations according to a xed multipolarity. The presence of a coupling term in the single particle Hamiltonian between the particle motion and the collective coordinate generates a fully selfconsistent dynamics. We consider in particular monopole oscillations and demo...

متن کامل

Vibrating Quantum Billiards on Riemannian Manifolds

Quantum billiards provide an excellent forum for the analysis of quantum chaos. Toward this end, we consider quantum billiards with time-varying surfaces, which provide an important example of quantum chaos that does not require the semiclassical (~ −→ 0) or high quantum-number limits. We analyze vibrating quantum billiards using the framework of Riemannian geometry. First, we derive a theorem ...

متن کامل

Coexistence of regular undamped nuclear dynamics with intrinsic chaoticity.

We study the conditions under which the nucleons inside a deformed nucleus can undergo chaotic motion. To do this we perform self-consistent calculations in semiclassical approximation utilizing a multipole-multipole interaction of the Bohr-Mottelson type for quadrupole and octupole deformations. For the case of harmonic and non-harmonic static potentials, we find that both multipole deformatio...

متن کامل

Chaoticity and Dissipation of Nuclear Collective Motion in a Classical Model

We analyze the behavior of a gas of classical particles moving in a twodimensional ”nuclear” billiard whose multipole-deformed walls undergo periodic shape oscillations. We demonstrate that a single particle Hamiltonian containing coupling terms between the particles’ motion and the collective coordinate induces a chaotic dynamics for any multipolarity, independently on the geometry of the bill...

متن کامل

Chaoticity Generated by a Learning Model

In this paper we consider a learning rule whose underlying space, possibly infinite dimensional, is equipped with an inner product. The rule proposed is a generalization of Oja’s maximum eigenfilter algorithm. We study its convergence properties and iterative behavior. We observe a whole variety of dynamical behaviors. We establish conditions on parameter values generating chaoticity as well as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review C

سال: 1995

ISSN: 0556-2813,1089-490X

DOI: 10.1103/physrevc.52.2475